首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4413篇
  免费   133篇
  国内免费   518篇
化学   3148篇
晶体学   57篇
力学   98篇
综合类   1篇
数学   57篇
物理学   1703篇
  2023年   130篇
  2022年   111篇
  2021年   71篇
  2020年   114篇
  2019年   147篇
  2018年   103篇
  2017年   117篇
  2016年   148篇
  2015年   176篇
  2014年   175篇
  2013年   208篇
  2012年   191篇
  2011年   359篇
  2010年   300篇
  2009年   333篇
  2008年   299篇
  2007年   325篇
  2006年   238篇
  2005年   183篇
  2004年   183篇
  2003年   165篇
  2002年   118篇
  2001年   85篇
  2000年   87篇
  1999年   73篇
  1998年   87篇
  1997年   64篇
  1996年   52篇
  1995年   50篇
  1994年   53篇
  1993年   34篇
  1992年   41篇
  1991年   43篇
  1990年   16篇
  1989年   19篇
  1988年   17篇
  1987年   5篇
  1986年   18篇
  1985年   9篇
  1984年   11篇
  1983年   8篇
  1982年   10篇
  1981年   18篇
  1980年   12篇
  1979年   10篇
  1978年   12篇
  1977年   6篇
  1976年   9篇
  1975年   5篇
  1974年   6篇
排序方式: 共有5064条查询结果,搜索用时 15 毫秒
1.
2.
This study aimed to investigate the chemical composition of Tribulus terrestris L. fruit (TT) extract named TT15 and its protective effect against ischemic stroke (IS) as well as corresponding mechanisms. The chemical composition of TT15 was analyzed by liquid chromatography-mass spectrometry (LC-MS), and the compound identification was conducted via searching the in-house database. The LC-MS-based multi-omics approach was applied to search the differential metabolites and differential proteins in rat brain tissue and to explore the biomarker and molecular mechanism of TT15 against middle cerebral artery occlusion (MCAO). A total of 20 compounds were identified from TT15, mainly including alkaloids, flavonoids, phenols, quinones, and esters. These 20 compounds significantly affected the metabolism of 44 metabolites and the expression of 51 proteins. Joint pathway analysis showed that these metabolites and proteins were mainly involved in the response to elevated platelet cytosolic Ca2+ and platelet activation, which inferred that TT15 may exert a protective effect against cerebral ischemic injury via regulating platelet function. This study provides useful information for further exploration of the mechanisms of TT extract against IS.  相似文献   
3.
Covalent functionalization of 2D materials provides a tailored approach towards tuning of their chemical, optical, and electronic properties making the search for new ways to graft small molecules important. Herein, the reaction with (3,5-bis(trifluoromethyl)phenyl)iodonium salt is revealed as an effective strategy for functionalization of MoTe2 thin films. Upon decomposition of the salt, the generated radicals graft covalently as aryl-(CF3)2 groups at the surface of both metallic (1T’) and semiconducting (2H) polymorphs of MoTe2. Remarkably, the reactivity of the salt is governed by the electronic structure of the given polymorph. While the functionalization of the metallic MoTe2 occurs spontaneously, the semiconducting MoTe2 requires activation by light. The reaction proceeds with the elimination of oxide from the original films yielding the functionalized products that remain protected in ambient conditions, presenting a viable solution to the ageing of MoTe2 in air.  相似文献   
4.
Along with the rapid development of industry, VOCs gradually move into the spotlight, and now become a kind of harmful environmental pollutants that cannot be overlooked. This paper introduces the hazards of VOCs and the common catalytic combustion catalysts, noble metal catalysts and non-noble metal catalysts, for the elimination of VOCs. Perovskite catalysts, as one of the non-noble catalysts, play an important role in the field of catalytic combustion in recent years. According to the classification of elements doping in perovskites, the research achievements in the past five years were analyzed and reviewed. In addition, this paper also analyzes and elaborates the reaction kinetics and QSAR/QSPR models for the introduction of structural properties and reaction mechanisms.  相似文献   
5.
This review article covers the growth and characterization of two-dimensional (2D) crystals of transition metal chalcogenides, h-BN, graphene, etc. The chemical vapor transport method for bulk single crystal growth is discussed in detail. Top-down methods like mechanical and liquid exfoliation and bottom-up methods like chemical vapor deposition and molecular beam epitaxy for mono/few-layer growth are described. The optimal characterization techniques such as optical, atomic force, scanning electron, and Raman spectroscopy for identification of mono/few-layer(s) of the 2D crystals are discussed. In addition, a survey was done for the application of 2D crystals for both creation and deterministic transfer of single-photon sources and photovoltaic systems. Finally, the application of plasmonic nanoantenna was proposed for enhanced solar-to-electrical energy conversion and faster/brighter quantum communication devices.  相似文献   
6.
The sonochemical activity and the radial dynamics of a harmonically excited spherical bubble are investigated numerically. A detailed model is employed capable to calculate the chemical production inside the bubble placed in water that is saturated with oxygen. Parameter studies are performed with the control parameters of the pressure amplitude, the forcing frequency and the bubble size. Three different definitions of collapse strengths (extracted from the radius vs. time curves) are examined and compared with the chemical output of various species. A mathematical formula is established to estimate the chemical output as a function of the collapse strength; thus, the chemical activity can be predicted without taking into account the chemical kinetics into the bubble model. The calculations are carried out by an in-house code exploiting the high processing power of professional graphics cards (GPUs).The results shown that chemical activity can be approximated qualitatively from the values of relative expansion. This could be helpful in order to optimise chemical output of sonochemical reactors either from measurement data or simulations as well.  相似文献   
7.
《中国化学快报》2020,31(9):2353-2357
NiS2 has become a research hotspot of anode materials for Na-ion batteries due to its high theoretical specific capacity. However, the volume effect, the dissolution of polysulfide intermediates and the low conductivity during the charge/discharge process lead to the low specific capacity and poor cycling stability. NiS2/rGO nanocomposite was prepared by a facile two-step process: GO was prepared by modified Hummers method, and then NiS2/rGO nanocomposite was synthesized by l-cys assisted hydrothermal method. NiS2/rGO nanocomposite shows excellent cycle performance and rate performance, which could be attributed to the mesoporous structure on the graphene skeleton with high conductivity. Besides, the chemical constraint of a unique SO bond on NiS2 could inhibit the dissolution of intermediates and the loss of irreversible capacity.  相似文献   
8.
《Current Applied Physics》2020,20(3):456-461
Carbon-based electrocatalysts for oxygen reduction reaction (ORR), especially in anion exchange membrane fuel cells (AEMFCs), have received a lot of attention because they exhibit excellent stability and are comparable to commercial Pt/C catalysts. Currently, to maximize the catalytic activity of carbon-based electrocatalysts, there are two major strategies: heteroatom doping or exposing active edge sites. However, the approach of increasing heteroatomic dopants of active edge sites has been rarely addressed. In this study, we present a simple strategy to prepare edge-enriched graphene catalysts with an increased ratio of heteroatomic dopants suitable for ORR of AEMFCs. The catalysts were prepared under harsh oxidation conditions, followed by a simple co-doping process with boron and nitrogen. The ORR activity of the catalysts was observed to be related to an increase of edge sites with heteroatomic dopants. We believe that the edge-enriched structure leads to accelerated electron transfer with enhanced oxygen adsorption.  相似文献   
9.
The present study was conducted to evaluate the effect of ultrasonic (US) treatment on chemical characteristics and antioxidant potential of pulps obtained from eight mango varieties indigenous to Pakistan. There was a significant (p < 0.05) effect of varieties and US treatment on chemical characteristics i.e. pH, acidity, TSS, vitamin C contents, total sugars (%), reducing sugars (%) and non-reducing sugars (%). Microstructure evaluation of pulp from all mango varieties showed deshaped middle lamella and cell wall of cells after 8 min of US treatment. At 4 min of US treatment as per shaped cell wall and middle lamella, the chemical characteristics and antioxidant potential were higher. The total phenolics (TP), flavonoids (TF) and total antioxidant activity (TAA) of pulp from most varieties increased significantly (p < 0.05) after US treatment for 4 min but decreased successively after each treatment i.e. 8 and 12 min. The maximum value (314.17 μg AAE/mL pulp) of DPPH was shown by pulp from Dosehri and the minimum (158.67 μg AAE/mL pulp) was found in pulp from Langra before US treatment. The DPPH values of pulp from most of the varieties increased significantly (p < 0.05) after US treatment for 4 min but decreased successively after each treatment but pulp from Langra showed increasing trend after 8 min of US treatment which decreased after 12 min of treatment. The total anthocyanin (TA) values of pulp from Chaunsa, Dosehri, Sindhri, Gulab Khas and Langra increased abruptly after US treatment for 4 min but decreased successively after subsequent treatment. The pulp from Desi, Anwar Ratol, Gulab Khas and Langra showed an abrupt decrease in TA after 8 min of US treatment. An increasing trend of values of total carotenoids (TC) was shown by pulp from all mango varieties after 4 min of US treatment but decreasing trend was observed with subsequent increase in time of US treatment.  相似文献   
10.
Degradation of pyrene in soil in a net-to-net pulsed discharge plasma (PDP) system was reviewed. Effect of main chemical parameters, including air flow rate, pyrene concentration, initial pH and soil moisture content on pyrene degradation was examined. The obtained results show that 87.9% of pyrene could be removed under the condition of 60 min reaction; increasing of air flow rate within 1 L min−1 was favorable for degradation; pyrene removal was decreased with the increase of initial pyrene concentration; oxidation of pyrene was more evident in acidic soil; enhancement of soil moisture content has no benefit on pyrene degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号